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1. INTRODUCTION 

RSF [l] is a spectral code which follows the time evolution of the reduced MHD 
equations [2]. Its numerical results have been central to much development of the 
theory of nonlinear tearing modes and disruptions in tokamaks [2, 3, and referen- 
ces therein]. RSF has shown quantitatively different behaviour of plasma variables 
as magnetic Lundquist numbers are raised to values (S- 106) which are beyond the 
capabilities of existing finite difference codes. 

The purpose of this note is to discuss the stability properties of the time 
integration scheme used in RSF. The consequences of its weak stability properties 
are that (i) unnecessarily small timesteps At may be needed, (ii) physical processes 
may become confused with numerical effects, and (iii) the code may 
catastrophically fail. Code failure may be due either to exponential growth causing 
overflow, or in the case of adaptive timesteps, the timestep becoming exponentially 
small. If the timestep becoming too small is the only difficulty, then it is still of 
importance to understand why this occurs in order to devise more efficient schemes 
to bring physical parameters encountered in tokamaks within the capability of 
present day computers. If physical processes are modified, the whole of the com- 
putations becomes open to question. 

We show in this note for both the typographically incorrect published algorithm 
[ 1 ] and for the corrected algorithm [7] that stability of the integration scheme 
relies on the coupling of the flux and vorticity equation: The vorticity advection 
scheme is of the centred space/forward time type which requires the addition of 
physical or numerical dissipation for stability. For the inviscid plasma model used 
in RSF, stabilisation requires K . B nonzero (cf. below), so for zero magnetic field or 
wavenumber function K perpendicular to B, the scheme is unconditionally unstable. 
The published stability criterion given for RSF is necessary, but not sufficient. For 
large S and for nonzero plasma flow, much more stringent conditions must be 
satisfied. 
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2. MODEL EQUATIONS 

The large aspect ratio limit orders toroidal curvature out of the equations. Con- 
sequently, the reduced equations may be written in polar (I, 8, z) or Cartesian (x, y, 
z) coordinates with z corresponding to the toroidal direction as: 

au 
at= -v-VU-S2 e,xV**Vj+z 

( ‘1 

a$ 
at= 

-E,“-B.V#+qj 

v=Vdxe, (3) 
j=V:* (4) 
u=v:$b. (5) 

The definition of variables and operators follows Cl]. e, is the unit vector in the 
z direction. With appropriate choice of z scale length, the magnetic field is related to 
the flux function, ICI, by 

B=e,xV$+e,. 

Equations (1 k(5) describe an incompressible magnetofluid where poloidal 
currents and toroidal magnetic field variations are negligible. Energy flows into the 
system through the wall Poynting flux, is stored in magnetic and bulk flow energy, 
and flows out by ohmic dissipation. The model equations describe AlfvCn waves 
and tearing modes. 

A dispersion relation may be obtained by linearising Eqs. (l)-(5) about a 
uniform slab equilibrium in Cartesian coordinates with r] = 1, j, = U, = 
0, B, = constant, v0 = 0, and taking a disturbance N exp [ - i(ot - k * x)] : 

0+-o, 

otherwise 
(6) 

k: WiZ --) 
2 

wf>O, 

1 
112 

- S2(k * B,)= otherwise. 
(7) 

Equations (6k(7) differ from the MHD results only in that k2 is replaced by its 
projection kt on the poloidal plane. The modification of the Alfvtn wave eigenfre- 
quencies by the space-time lattice is the source of the numerical instabilities listed 
in Section 1. 
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3. DISCRETE APPROXIMATION 

Equations (1 )-( 5) are discretised in polar coordinates (r, 8, z) in RSF by using a 
Galerkin method on a set of helical trial functions wexp i[me + nz], second-order 
finite differences to treat radial derivatives and a two step second-order accurate 
time discretisation to deal with time derivatives [ 1, 71. 

The algebraic equations to be solved in advancing the system from time t to time 
t+At are 

4+ (9) 

u f+Af= (-,,‘+AtS;+A1/2 (10) 

* ~+A~=Ic/~+A~s~+A/z (11) 

where S, and S, are the right-hand sides of Eqs. (1) and (2) with derivatives 
replaced by their Fourier mode/finite difference approximations. Implicit treatment 
of the Ohmic dissipation in Eq. (9) has a stabilizing effect which offsets partially the 
destabilising influence of explicit advection terms. In the typographically incorrect 
algorithm [l], B,= 0 and 6B = B, whilst in the correct algorithm [7], B, is the 
initial axisymmetric field and 6B = B - B,. This change improves the numerical 
stability. 

4. STABILITY ANALYSIS 

To investigate the linear stability properties of the discrete algebraic plasma 
model, we consider a uniform magnetised plasma in slab geometry. We take a mesh 
in the y direction and fourier modes in the x and z directions. This may be viewed 
as a local (short wavelength) approximation to the cylindrical geometry, where r, 8, 
and z map respectively to y, x, and z. We implicitly assume that the high frequency 
AlfvCn modes are the limiting factor on the time integration: the analysis does not 
include current gradients, mesh, and field curvature. If the scheme proves inade- 
quate even in the simplest situations, it is unlikely to be stabilised when extra 
physically destabilising effects are included. 

Equilibria are defined by selecting U,, B,, j,,, 4, such that Sz = S$ = 0. Again, the 
local nature of the analysis should be borne in mind: If B, corresponds to the (m, 
n) = (0,O) mode at time t = 0, then the whole of the B .V$ term in Eq. (9) should 
be treated as implicit. At later times, as the axisymmetric part evolves, the term 
becomes partly implicit, partly explicit. For (m, n) # (0, 0), all contributions to 
B * Vq5 term are explicit. Since the stability analysis is concerned with limiting cases, 
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we take the worst case where the B. V4 term is explicit: This is pessimistic for early 
stages of a calculation where the field is predominantly the implicit part of the (0,O) 
mode, but not so for later stages. 

Dispersion and stability are analysed in the same manner as for the continuum 
case: Fourier analysing the linearised forms of Eqs. (8)-( 11) and eliminating 
reference to the half timelevels gives an equation of the form 

(12) 

for the perturbed variables I?, 5. The amplification matrix A must have eigenvalues 
in the unit circle for stability [4, Chap. 41. The dispersion relation for the numerical 
plasma model is 

where II = exp[ -L&t]. 

det(A -Al ) = 0 (13) 

Solving Eq. (13) for the case where the plasma is at rest in the mesh frame of 
reference gives 

A= Cl -2g2(1 +ug)+2g[aZ(g2+ 1)2- l]“‘] 
(1 + zag) 

(14) 

where 

g=S(K*B,))$ m 
a= S(K.B,) 

and K and rc: are the Fourier transforms of the discretised V and V: operators, 
respectively. 

In the limit dt + 0, Eq. (14) reduces to equations of the form of Eqs. (6) and (7), 
differing only in that k and k: are replaced by the spatial finite difference modified 
forms K and K:. For finite At, the numerical approximation to Alfven waves given 
by Eq. (14) describes damped waves, provided that ) 2 1 < 1. Hence, numerically 
stable timesteps are those for which 111 < 1. Finite At errors are negligible when 
solutions of Eq. (14) deviate only slightly from those of Eqs. (6) and (7), i.e., when 
io’ + (A - l)/At is small, where w’ is given by Eqs. (6) and (7). 

4.1. S + 00 Limit 

In the limit S + co, with SAt = constant (i.e., timestep is fixed in Alfven time 
units, so g remains finite and a --) 0) Eq. (14) reduces to A= 1 - 2g2 f i2g, giving 

IAl = [1+4g4]1’2> 1 for g # 0, 

i.e., the algorithm is unconditionally unstable for S + co. 
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4.2. Finite S, Zero Flow 

The curve a( g2 + 1) = 1 divides the g/a parameter space into regions where 2 is 
real (evanscent roots) and 2 is complex (oscillatory roots). Substituting Eq. (14) 
into ) 2 I* < 1 gives the stability limit in the two instances: 

-g4+2ug3+g2- 1 do, I real 

g3-ag2-a d 0, 2 complex 
(15) 

The published stability criterion [l] 

Smax E-n +<l 
I I 4 

(16) 

is a singular result, as it only applies for the initial axisymmetric field and for zero 
flow. For small changes from the initial equilibrium, the stability criterion in the 
absence of flow becomes 

g=Smax/k,B,+f-n 
At 
-2-G 1, (17) 

where k,-7t/2Ar. Equation (17) reduces to Eq. (16) only when island widths are 
small compared to mesh spacings. Thus the suggestion in [ 1 ] that At is indepen- 
dent of grid spacing is somewhat misleading. 

For large S, stability for the arbitrary field orientation is determined by the 
second case in Eq. (15); this is because the wavenumber at which Alfven waves 
become evanescent is larger than the largest wavenumber resolved on the radial 
mesh at large S. A sufficiency condition arising from Eq. (15) for L complex is 

gaP { 6 [a(1 +g2)]“3} (18) 

provided that the flow velocity v is zero. Thus, the algorithm becomes increasingly 
unstable at large S, and the criterion Eq. (16) is necessary but not sufficient. 

4.3. Non-zero Flow, K * B, = 0 

Non-zero flow does not simply mean Doppler-shift frequencies as in the con- 
tinuum case. It allows the possibility of further instabilities. Extending Eq. (14) to 
include uniform flow v0 is straightforward but tedious. For the special case 
K * B, = 0, the vorticity (U) and flux (II/) equations decouple, and the vorticity 
equation gives the stability criterion 

1 +~[(Kv,)+ 1, (19) 

i.e., the scheme is unconditionally unstable for flows with wavenumbers such that 
K.B,,=O. 
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4.4. General Case 

The most general case we consider is the stability of Alfvin waves for arbitrary 
flow velocity and magnetic field orientation w.r.t. the radial mesh. This may be 
interpreted as a local (short wavelength) analysis applicable when large island 
structures are established. Following the procedure of Eqs. (12k(14) yields a com- 
plex quadratic for ;Z when flow velocity v is nonzero. Solving numerically for the 
marginally stable waves ( A 1 = 1 gives Fig. 1. Figure 1 summarises the regions of the 
g-c plane for stable operation for a range of flow velocity parameters d, where 

c = (k’~/wm d= (K*v)(dt/2). 

The figure may be interpreted as a projection of a 3-dimensional volume in g-c-d 
space within which operating points of the time integration scheme are stable. 
Parameters g, c, d respectively give the ratio of timestep to characteristic timescales 
for AlfvCn waves, resistive decay, and flow. 

The stability volume is that part of g, c, d space, where 1 II 1 < 1. Stability criteria 
for integration schemes are generally obtained by defining some volume around the 
origin which is enclosed by the stability volume, i.e., one tries to establish an 
expression of the form max{ c1 1 g I + p I c 1 + y I d I } < 1. Since the stability volume 

0 0 

C C 

-04 -04 

FIG. 1. Stability boundaries in the g-c plane for a range of values of d. Parameters g, c, dare respec- FIG. 1. Stability boundaries in the g-c plane for a range of values of d. Parameters g, c, dare respec- 
tively ratios of the timestep to characteristic Alfvtn, resistive decay, and flow transit times, (see text). The tively ratios of the timestep to characteristic Alfvtn, resistive decay, and flow transit times, (see text). The 
stable regions shrink with increasing d. stable regions shrink with increasing d. 
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FIG. 2. (a) Current density profile versus minor radius at step 114, t = 2.17 x 10 -3,; (b) Stability 
parameter versus minor radius at step 114; (c) Current density protile at step 750, t = 2.41 x IO-*t,. The 
timestep is set such that g < 1. 

has clefts reaching the origin around the c = 0 (large S) and g= 0 (small K * B) 
planes, an easily computable stability criterion is difficult to define. Indeed, the 
above bounding methods (cf. Sect. 4.3) give unconditional instability as the result! 

5. COMPUTATIONAL RESULTS 

Figure 2 illustrates timestepping instability in a single mode calculation (m = 2, 
n = 1). We have used a copy of the program RSF provided by Hicks [6]. The flat 
top current profile defined in [3, Eq. (21)] with (qr= 4.2, q(0) = 1.34, I = 3.24) was 
used as initial conditions, and the nonlinear evolution was followed using RSF with 
Ng = 100 radial grid points, and an initial timestep At = 0.8 times the stability limit 
value in the initial axisymmetric field. 

Figure 2a shows the current density profile at step 114. The peak between 
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r/a = 06-0.8 corresponds to the 2/l island, and the spikes between r/a = 0.24.6 are 
numerical. Note that the width of the spikes is large compared to the mesh spacing, 
as is predicted by the stability analysis. Figure 2b shows an estimator S of the 
stability parameter g: 

computed at the same timestep as Fig. 2a. Appearance of instability correlates well 
with g> 1. Reducing the timestep to ensure 2 < 1 leads to the smooth final state 
shown in Fig. 2c. 

The stability criterior g N g < 1 is good only when changes from the initial field is 
small and flow is such that g $ d; g < 1 is a necessary condition for stability, but not 
sufficient. These calculations are presented to illustrate the instability mechanism, 
not the stability bound. To have a sharp stability bound, the integration scheme 
must be modified [ 51. 

6. FINAL REMARKS 

The stability of the published RSF algorithms [ 1, 71 depend on timestep, radial 
mesh spacing, allowed modes, magnetic field configuration, and flow velocity. 
Clearly it is possible to initiate computations which are numerically stable, but it is 
difficult to assure stability through the nonlinear evolution of fields and flow, par- 
ticularly for large S. 

Conventional bounding techniques on numerical algorithms seek criteria of the 
form 1 UJ At/Ax <IX where a is some number. Analysis presented here shows that 
such a criterion does not hold for the scheme considered here. Additional dis- 
sipation or orientational information (K *B ~0) is needed to eliminate the 
possibility of flow driven instabilities. Alfven wave damping is reduced to marginal 
levels when g-all3 if S is large. Since Alfvbn waves are an important means of 
transporting energy from disturbances at large S, numerical destabilisation can 
have significant effects. 

To avoid confusing numerical and physical effects in computational results it is 
desirable to employ a more stable algorithm. Also it is essential to (i) perform con- 
vergence checks, (ii) monitor linear stability, and (iii) maintain running checks on 
energy conservation. Points (i) and (iii) are discussed in [l]. We shall present 
further details of these points, together with discussions of nonlinear interaction 
with the timestep reduction algorithm, of spatial aliasing, and of algorithm 
improvements in future reports [S]. If large S values are necessary, then such com- 
putations will continue to demand more efficient algorithms and more powerful 
computers. 
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